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Equation of state for exclusion statistics in a harmonic well
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Abstract. We consider the equations of state for systems of particles with exclusion statistics
in a harmonic well. Paradigmatic examples are non-interacting particles obeying ideal fractional
exclusion statistics placed in (i) a harmonic well on a line, and (ii) a harmonic well in the lowest
Landau level (LLL) of an exterior magnetic field. We show their identity with (i) the Calogero
model and (ii) anyons in the LLL of an exterior magnetic field and in a harmonic well.

Haldane’s definition of fractional statistics based on a generalized exclusion principle [1]
when appliedlocally in phase space results in single state statistical distributions forideal
fractional exclusion statistics (IFES) [2, 3]. Thermodynamic quantities corresponding to
IFES first appeared in the literature for anyons in the lowest Landau level (LLL) of an
exterior magnetic field [4], i.e. for a gas of particles with a degenerate one body spectrum.
On the other hand, in one dimension, IFES can be modelled with inverse square interactions
[5]. The relevant systems are the Sutherland model (particles on a circle) [6] and the
Calogero model (particles on a line in a harmonic potential) [7].

To derive the equation of state (or the virial expansion) for interacting systems modelling
IFES [8, 9], one can start from a system placed in a harmonic potential and then use a
thermodynamic limit prescription to obtain the equation of state for the original system in
the infinite box. The harmonic potential is then referred to as a ‘long distance regulator’.
This procedure, originally proposed for anyons [10], has then been put on general ground
[11, 8]. In particular, it is precisely the way that the equation of state for anyons in the LLL
was originally derived [4]. (For several species of particles see [12].) The same procedure
can be applied to 1D particles with inverse square interactions: virial coefficients for this
model have been derived [8] starting from the energy levels of the Calogero model and
using an adequate 1D thermodynamic limit prescription. The latter result was also verified
using the equivalence of the Sutherland model to a system of free particles obeying IFES
[13].

In this paper, we address the question of the equation of state for exclusion statistics
in a harmonic potential, without considering the transition to a system in the infinite box
limit. We refer to this case as a ‘physical’ harmonic potential. What we have in mind are
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mesoscopic quantum dots systems where finite volume effects are supposed to be described
by a harmonic well. Since there is no well-defined volume in this system, the equation
of state (or the potential�) depends on the particle numberN , the harmonic potential
frequencyω, and on other parameters as well. A similar form of the equation of state has
already been discussed in the Thomas–Fermi approximation for 1D IFES particles in an
external potential [14].

We start by assuming a certain temperature scaling for the one-particle partition function
of non-interacting IFES particles. In this context, the equation of state is valid both for
particles in an infinite box and in a ‘physical’ harmonic well. As examples, we discuss
non-interacting particles in (i) a 1D harmonic well and (ii) in a 2D harmonic well in the
LLL of an external magnetic field. Both these cases correspond to constant density of levels
in energy. We compare the relevant equations of state with those for (i) the Calogero model
and (ii) anyons in a harmonic well in the LLL of an external magnetic field. We discuss
more generally a specific form of the equation of state for IFES with a constant density of
states for systems both in a box and in a harmonic well. Introducing the effective volume
occupied by the gas in a harmonic well at a given temperature, we obtain finally an equation
of state in a ‘physical’ harmonic well quite similar to those in a box.

Ideal fractional exclusion statistics can be defined by the single-state grand partition
function

[ξ(xi)]
g−1[ξ(xi) − 1] = xi (1)

whereεi is the energy of the statei andxi is the Gibbs factorxi ≡ eβ(µ−εi ), β = 1/kBT .
The statistics parameterg = 0 corresponds to Bose andg = 1 to Fermi statistics.

The distribution functionn(xi) = xi(∂/∂xi) ln ξ(xi) is connected withξ(xi) by the bilinear
relation

1

n(xi)
= 1

ξ(xi) − 1
+ g. (2)

Expanding in powers ofxi yields

ln ξ(xi) =
∞∑

k=1

Qk

k
xk

i Qk =
k−1∏
l=1

(
1 − g

k

l

)
= 0(k − gk)

0(k)0(1 − k)
. (3)

By summing lnξ(xi) andn(xi) over i, one obtains the expansions

−β� =
∞∑

k=1

bkz
k N =

∞∑
k=1

kbkz
k (4)

(z = eβµ is the fugacity), with the cluster coefficients

bk = Qk

k
Z1(kβ) (5)

Z1(β) = ∑
i e−βεi is the one-particle partition function.

Without specifying in detail the system at this stage, we assume that the partition function
Z1(β) scales with the inverse temperatureβ as

Z1(kβ) ' e−kβε0

k1+δ
Z′

1(β). (6)

This scaling is relevant for systems with a gapε0 in the single particle energy spectrum,
with one-particle partition functionZ1(β) = e−βε0Z′

1(β). This factorization will indeed
materialize in the thermodynamic limit for various physical systems as we will see below.
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Taking into account (6), the cluster coefficients (5) become

bk = Qk

k2+δ
e−kβε0Z′

1(β). (7)

One deduces from (4) the ‘virial expansion’

−β� =
∞∑

k=1

Ak

Nk

[Z′
1(β)]k−1

(8)

with the dimensionless ‘virial coefficients’

A1 = 1 A2 = 1

22+δ
(2g − 1)

A3 = [(4−1−δ − 2 × 3−2−δ) + g(g − 1)(4−δ − 3−δ)], . . . . (9)

We now specialize on the particular caseδ = 0, which can be completely analysed.
This case is of particular interest since it implies a 1/β scaling forZ1(β), which means a
constant density of states in energy. One can already see from (9) thatδ = 0 is special
since it implies thatA3 does not depend on the statistical parameterg.

Comparing the second expansion in (4) with the cluster coefficients (7), with (3), one
can write

N = Z′
1(β) ln ξ(z′) (10)

wherez′ = ze−βε0. Regarding equation (10) as determiningz′ as a function ofN , we obtain
from (4)

−∂β�

∂N
= 1

z

∂z′(N)

∂N
N. (11)

To calculate ∂z′(N)/∂N (or ∂N(z′)/∂z′), we use (10) and (1), (2). Noting that
(1/N(z′))∂N(z′)/∂z′ = n(z′)/z′, we find an equation of state

−∂β�

∂N
= N

Z′
1(β)

(
1

eN/Z′
1(β) − 1

+ g

)
(12)

and upon integration, finally,

−β� =
∫ N

0

N ′

Z′
1(β)

dN ′

(eN ′/Z′
1(β) − 1)

+ 1

2
g

N2

Z′
1(β)

. (13)

Expanding this, we obtain the virial expansion

−β� = N

{
1 + 1

4
(2g − 1)

N

Z′
1(β)

+
∞∑

k=2

Bk

(k + 1)!

(
N

Z′
1(β)

)k}
(14)

where Bk are the Bernoulli numbers (B2 = 1
6, B4 = − 1

30), vanishing for k odd. It
appears that the statistical parameterg only enters the equation of state via the second
virial coefficient [15].

Let us now examine how the equations of state (8) and (13) can be relevant both to
systems in a box and in a ‘physical’ harmonic well.

We first consider a gas of free (spinless) particles, with generic dispersion lawε(p) =
ε0 + apσ occupying a box of volumeV in d dimensions. In the thermodynamic limit the
one-particle partition function is

Z1(kβ) = e−kβε0
0(1 + d/σ)V

(2
√

π)d0(1 + 1
2d)(akβ)−d/σ

(15)
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satisfying (6), withδ = d/σ − 1. In this case the virial expansion (8) becomes the usual
virial expansion for a system in a box with pressureP given by

βP =
∞∑

k=1

akρ
k ρ = N/V (16)

with the (dimensional) virial coefficients

ak = Ak

(
V

Z′
1(β)

)k−1

(17)

whereAk are given in (9). Note that the virial coefficients (17) coincide with those obtained
in [13] for ε0 = 0 showing that the presence of a gap in the particle dispersion does not
affect the equation of state.

The constant density of states case,δ = d/σ − 1 = 0, describes for example chiral
particles on a line with linear dispersion with a gap,

ε = ε0 + vp p > 0. (18)

The equation of state is (13) (or (14)) with

Z′
1(β) = V

2πvβ
. (19)

Let us now turn to systems in a ‘physical’ harmonic well. We restrict ourselves to cases
with a constant density of states, i.e. we consider non-interacting (non-relativistic) particles
that occupy single particle levels:

(i) in a 1D harmonic wellV (x) = 1
2mω2x2;

(ii) in the LLL of an external magnetic fieldB in a 2D harmonic well.
In a quantum dot language, whereω is small (for example with respect to the cyclotron
frequency), but non-vanishing, the harmonic well is supposed to encode the finite size effects
of the sample.

The one-particle energy levels are

ε` = ε0 + `$ ` > 0 (20)

where for the 1D harmonic model

ε0 = 1
2ω $ = ω (21)

whereas for the 2D LLL harmonic model, one has

ε0 =
√

ω2
c + ω2 $ =

√
ω2

c + ω2 − ωc (22)

or, to leading order inω2/ω2
c ,

ε0 = ωc $ = ω2

2ωc

. (23)

It follows from (20) that the one-particle partition function is

Z1(kβ) = e−kβε0

1 − e−kβ$
= e−kβε0

kβ$
(1 + 1

2(kβ$) + O[(kβ$)2]). (24)

Thus, to leading order inkβ$ , the partition function (24) scales as in (6), withδ = 0 and

Z′
1(β) = 1/β$. (25)

This leads to the equation of state (13), (14). If one considers the correction termsO(kβ$)

in (24), they might lead to corrections to the virial coefficients of very high order,N and
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above. However, if the virial expansion converges, these corrections are negligible inside
the radius of convergence.

It is interesting to note that for 1D IFES particles in a harmonic well, the equation
of state (13), (14) with (25) and (21) coincides with that obtained in the Thomas–Fermi
approximation [14]. We stress that the present derivation only uses the conditionβω � 1
when the discreteness of energy levels becomes inessential.

Systems modelling IFES are known to be 1D particles with inverse square interactions
and 2D anyons in the LLL of an external magnetic field. A harmonic well may be used as a
long distance regulator for these systems. We now investigate what happens if the harmonic
well becomes ‘physical’ (the first system is then the Calogero model). TheN -particle energy
levels for both the systems are given by [8]∑

`

n`ε` + 1
2N(N − 1)$g (26)

wheren` are non-negative integers with the constraint
∑

` n` = N , andε` is given by (20).
For anyons,g = α ∈ [0, 1] is the anyonic statistical parameter; for the Calogero model,
g = α > 0 defines the singular two-body potentialα(α − 1)/(xi − xj )

2 and specifies the
coinciding point (short distance) behaviour of theN -body wavefunction,9 ∝ |xi − xj |α as
|xi − xj | → 0.

The N -particle partition function corresponding to (26) is

ZN = e− 1
2 βN(N−1)$g

N∏
n=1

e−βε0

1 − e−nβ$
. (27)

Remarkably, the cluster coefficients obtained form (27) are [8]

bk = e−kβε0
Qk

k2β$
(1 + O(β$)) (28)

having, to leading order inβ$ , the form (7) withδ = 0 andZ′
1(β) given by (25). As

above, the terms of orderO(β$) in (28) are negligible inside the radius of convergence
of the virial expansion. It follows that both equations of state for the Calogero and LLL
anyon model in a 2D harmonic well are given by (13), (14) withZ′

1(β) determined by (25),
i.e. they are identical to the equations of states for non-interacting IFES particles in a 1D
harmonic well and in a 2D LLL harmonic well, respectively.

This happens to be a general feature of equations of states in a ‘physical’ harmonic well
for various physical systems modelling IFES with a constant density of levels: only the
second virial coefficient depends on the statistics parameter, in agreement with the general
statements for free IFES particles in a box [13].

As one more example corresponding to a constant density of levels, consider the model
of a chiral field on a circle proposed in [16]. This model was constructed by mapping the
second quantized LLL anyon model onto a circle. The energy levels of this model are given
by (26) with the identification

ω2

2ωc

= 2π

V
v (29)

whereV is the length of the circle. If the harmonic potential is assumed to materialize in the
anyon droplet of radiusV/2π by the action of an electric field, the velocityv can then be
interpreted as the drift velocityE/B on the edge (the velocity of the edge excitations), where
the electric field on the edge isE = (m/e)ω2R. The thermodynamic limit is understood as
ω → 0, V → ∞ whereasv is kept fixed. The spectrum (26), together with the identification
(29), yield the cluster coefficients (7) withδ = 0, ε0 = ωc, andZ′

1(β) given by (19). This
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leads to the equation of state (13), coinciding with that of free chiral 1D IFES particles with
dispersion (18). This conclusion is consistent with those of [17], namely, the model of a
chiral field on a circle [16] admits an interpretation in terms of IFES.

We finally note that (13) (or (14)) for a ‘physical’ harmonic well, withZ′
1(β) given

by (25), can be viewed as an equation of state relating the average pressure to the average
particle density in the harmonic well. The local pressureP(x) in a slowly varyingd-
dimensional harmonic potential is defined as

β� =
∫

ddx βP (x). (30)

The average pressure is then

β〈P 〉 ≡
(

βω

λT

)d ∫
ddx βP (x) (31)

whereλT = √
2πβ/m is the thermal de Broglie wavelength. The local particle densityρ(x)

being normalized as
∫

dDx ρ(x) = N , one can define the average density as

〈ρ〉 ≡
(

βω

λT

)d ∫
ddx ρ(x). (32)

Introducing the effective volume occupied by the gas at temperatureT by

Veff =
(

λT

βω

)d

(33)

we haveVeff ∼ Rd
eff, whereReff is determined by

1
2mω2R2

eff ' T . (34)

It follows that (14) can then be rewritten as a virial expansion in a box of volumeVeff (cf
(16), (17)):

β〈P 〉 = 〈ρ〉
(

1 + 1
4(2g − 1)β$Veff〈ρ〉 +

∞∑
k=2

Bk

(k + 1)!
(β$Veff)

k〈ρ〉k
)

. (35)

For non-interacting particles in a 1D harmonic well and for the Calogero model,β$Veff =
λT , whereas for non-interacting LLL particles in a 2D harmonic well and for LLL anyons
in a 2D harmonic well,β$Veff = 2π/eB. For the Calogero model, the equation of state
in the form (35) was conjectured in [8]. Note that for the LLL anyon model, the condition
1 � 2βωc guarantees that the particles, when confined in the quantum dot of sizeReff given
by (34), do not reach the second Landau level.
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